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Module 4: Stress-Strain Relations             
 

4.2.1 ELASTIC STRAIN ENERGY FOR UNIAXIAL STRESS  

 

 
Figure 4.1 Element subjected to a Normal stress 

In mechanics, energy is defined as the capacity to do work, and work is the product of force 
and the distance, in the direction, the force moves.  In solid deformable bodies,  
stresses multiplied by their respective areas, results in forces, and deformations are distances.  
The product of these two quantities is the internal work done in a body by externally  
applied forces.  This internal work is stored in a body as the internal elastic energy of 
deformation or the elastic strain energy. 

Consider an infinitesimal element as shown in Figure 4.1a, subjected to a normal stress sx.  
The force acting on the right or the left face of this element is sx dydz.  This force causes an 
elongation in the element by an amount ex dx, where ex is the strain in the direction x.   

The average force acting on the element while deformation is taking place is 
2
dzdy

xs .  

This average force multiplied by the distance through which it acts is the work done on the 
element.  For a perfectly elastic body no energy is dissipated, and the work done on the 
element is stored as recoverable internal strain energy.  Therefore, the internal elastic strain 
energy U for an infinitesimal element subjected to uniaxial stress is  

dU =
2
1
sx dy dz  ´ex dx 

(a) (b) 
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    = 
2
1

 sx ex dx dy dz    

Therefore, dU = 
2
1 sx ex dV 

 where   dV = volume of the element. 
Thus, the above expression gives the strain energy stored in an elastic body per unit volume 

of the material, which is called strain-energy density 0U . 

Hence, 
dV
dU

 = 0U  =
2
1 sx ex 

The above expression may be graphically interpreted as an area under the inclined line  
on the stress-strain diagram as shown in Figure (4.1b).  The area enclosed by the inclined 
line and the vertical axis is called the complementary energy.  For linearly elastic materials, 
the two areas are equal.  
 
 
4.2.2 STRAIN ENERGY IN AN ELASTIC BODY 

 

 
 

(a) (b) 
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Figure 4.2. Infinitesimal element subjected to: uniaxial tension (a), with resulting  
       deformation (b); pure shear (c), with resulting deformation (d) 

 

When work is done by an external force on certain systems, their internal geometric states 
are altered in such a way that they have the potential to give back equal amounts of work 
whenever they are returned to their original configurations. Such systems are called 
conservative, and the work done on them is said to be stored in the form of potential energy.  
For example, the work done in lifting a weight is said to be stored as a gravitational potential 
energy.  The work done in deforming an elastic spring is said to be stored as elastic potential 
energy. By contrast, the work done in sliding a block against friction is not recoverable; i.e., 
friction is a non-conservative mechanism.  

Now we can extend the concept of elastic strain energy to arbitrary linearly elastic bodies 
subjected to small deformations.  

Figure 4.2(a) shows a uniaxial stress component sx acting on a rectangular element,  
and Figure 4.2(b) shows the corresponding deformation including the elongation due  
to the strain component ex. The elastic energy stored in such an element is commonly called 
strain energy.  

In this case, the force sx dydz acting on the positive x face does work as the element 
undergoes the elongation dxxe . In a linearly elastic material, strain grows in proportion to 
stress. Thus the strain energy dU stored in the element, when the final values of stress and 
strain are xs and xe is 

dU =
2
1

 (sx dydz) (exdx) 

(c) 
(d) 
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      = 
2
1 sx ex dV                         (4.28) 

where dV = dx dy dz = volume of the element. 

If an elastic body of total volume V is made up of such elements, the total strain energy U is 
obtained by integration  

 U = 
2
1
ò
v

sx ve  dV                                      (4.29) 

Taking sx =
A
P

 and ex = 
L
d

 

where P = uniaxial load on the member 
          d  = displacement due to load P 
          L = length of the member,    
          A = cross section area of the member 
We can write equation (4.28) as 

 ò÷ø
ö

ç
è
æ
÷
ø
ö

ç
è
æ=

v

dV
LA

P
U

d
2
1

 

Therefore, U  = 
2
1

P.d         since V = L ´  A                       (4.30) 

Next consider the shear stress component txy acting on an infinitesimal element in  
Figure 4.2(c).  The corresponding deformation due to the shear strain component gxy is 
indicated in Figure 4.2(d).  In this case the force txy dxdz acting on the positive y face does 
work as that face translates through the distance gxy dy.  Because of linearity, gxy and txy grow 
in proportion as the element is deformed.  

The strain energy stored in the element, when the final values of strain and stress are gxy and 
txy is 

( )( )dydxdzdU xyxy gt
2
1

=  

       dxdydzxyxygt
2
1

=  

Therefore, dU =
2
1

 txy gxy dV                  (4.31) 

The results are analogous to equation (4.28) and equation (4.31) can be written for any other 
pair of stress and strain components (for example, sy and ey or tyz and gyz) whenever the 
stress component involved is the only stress acting on the element.  

Finally, we consider a general state of stress in which all six stress components are present.  
The corresponding deformation will in general involve all six strain components.  The total 
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strain energy stored in the element when the final stresses are sx, sy, sz, txy, tyz, tzx and the 
final strains are ex, ey, ez, gxy, gyz, gzx is thus 

dU =
2
1

 (sxex + syey + szez + txy gxy + tyz gyz  + tzx gzx) dV                        (4.32) 

In general, the final stresses and strains vary from point to point in the body. The strain 
energy stored in the entire body is obtained by integrating equation (4.32) over the volume  
of the body.  

U = 
2
1

 ò
v

(sxex + syey + szez + txy gxy + tyz gyz + tzx gzx) dV                  (4.33) 

The above formula for strain energy applies to small deformations of any linearly  
elastic body.  
 
4.2.3    BOUNDARY CONDITIONS 

The boundary conditions are specified in terms of surface forces on certain boundaries of a 
body to solve problems in continuum mechanics. When the stress components vary over the 
volume of the body, they must be in equilibrium with the externally applied forces on the 
boundary of the body. Thus the external forces may be regarded as a continuation of internal 
stress distribution. 

 
Consider a two dimensional body as shown in the Figure 4.3 
 
 

 
 
 

Figure 4.3  An element at the boundary of a body 
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Take a small triangular prism ABC, so that the side BC coincides with the boundary of the 

plate. At a point P on the boundary, the outward normal is n. Let X  and Y  be the 

components of the surface forces per unit area at this point of boundary. X  and Y  must be a 
continuation of the stresses yx ss ,  and xyt at the boundary. Now, using Cauchy’s equation, 

we have 

 mlXT xyxx ts +==          (a) 

 mlYT yxyy st +==  

in which l and m are the direction cosines of the normal n to the boundary. 

For a particular case of a rectangular plate, the co-ordinate axes are usually taken parallel to 
the sides of the plate and the boundary conditions (equation a) can be simplified. For 
example, if the boundary of the plate is parallel to x-axis, at point 1P , then the boundary 
conditions become  

 xyX t=  and  yY s=                     (b) 

Further, if the boundary of the plate is parallel to y-axis, at point 2P , then the boundary 
conditions become 

 xX s=  and xyY t=          (c) 

It is seen from the above that at the boundary, the stress components become equal to the 
components of surface forces per unit area of the boundary. 
 
4.2.4    ST. VENANT’S PRINCIPLE 

For the purpose of analysing the statics or dynamics of a body, one force system may be 
replaced by an equivalent force system whose force and moment resultants are identical. 
Such force resultants, while equivalent need not cause an identical distribution of strain, 
owing to difference in the arrangement of forces. St. Venant’s principle permits the use of an 
equivalent loading for the calculation of stress and strain. 

St. Venant’s principle states that if a certain system of forces acting on a portion of the 
surface of a body is replaced by a different system of forces acting on the same portion of the 
body, then the effects of the two different systems at locations sufficiently far distant from 
the region of application of forces, are essentially the same, provided that the two systems of 
forces are statically equivalent (i.e., the same resultant force and the same resultant moment). 

St. Venant principle is very convenient and useful in obtaining solutions to many 
engineering problems in elasticity. The principle helps to the great extent in prescribing the 
boundary conditions very precisely when it is very difficult to do so. The following figures 
4.4, 4.5 and 4.6 illustrate  St. Venant principle. 
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Figure 4.4 Surface of a body subjected to (a) Concentrated load and  

(b) Strip load of width b/2 
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Figure 4.5 Surface of a body subjected to (a) Strip load of width b and  

(b) Strip load of width 1.5b 
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Figure 4.6 Surface of a body subjected to (a) Two strip load and  
(b) Inverted parabolic two strip loads 

 
 
 
Figures 4.4, 4.5 and 4.6 demonstrate the distribution of stresses (q) in the body when 
subjected to various types of loading. In all the cases, the distribution of stress throughout the 
body is altered only near the regions of load application. However, the stress distribution is 
not altered at a distance bx 2= irrespective of loading conditions. 
 
4.2.5  EXISTENCE AND UNIQUENESS OF SOLUTION (UNIQUENESS  

            THEOREM) 

This is an important theorem in the theory of elasticity and distinguishes elastic deformations 
from plastic deformations. The theorem states that, for every problem of elasticity defined by 
a set of governing equations and boundary conditions, there exists one and only one solution. 
This means that “elastic problems have a unique solution” and two different solutions cannot 
satisfy the same set of governing equations and boundary conditions.  
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Proof  

In proving the above theorem, one must remember that only elastic problems are dealt with 
infinitesimal strains and displacements. If the strains and displacements are not infinitesimal, 
the solution may not be unique.  

Let a set of stresses zxyx tss ¢¢¢ ,........, represents a solution for the equilibrium of a body under 

surface forces X, Y, Z and body forces Fx, Fy, Fz.  Then the equations of equilibrium and 
boundary conditions must be satisfied by these stresses, giving 

0xyx xz
xF

x y z

ts t¢¶¢ ¢¶ ¶
+ + + =

¶ ¶ ¶
;      (x, y, z) 

and   ),,(; zyxFnml xxzxyx =¢+¢+¢ tts  

where (x, y, z) means that there are two more equations obtained by changing the suffixes y 
for x and z for y, in a cyclic order.  

Similarly, if there is another set of stresses zxyx tss ¢¢¢¢¢¢ ,...., which also satisfies the boundary 

conditions and governing equations we have,  

),,(;0 zyxx
zyx
xzxyx =+

¶
¢¢¶

+
¶

¢¢¶
+

¶
¢¢¶ tts

 

and ),,(; zyxFnml xxzxyx =¢¢+¢¢+¢¢ tts  

By subtracting the equations of the above set from the corresponding equations of the 
previous set, we get the following set,  

( ) ( ) ( ) ),,(;0 zyx
zyx xzxzxyxyxx =¢¢-¢
¶
¶

+¢¢-¢
¶
¶

+¢¢-¢
¶
¶ ttttss  

and  ( ) ( ) ( ) ),,(;0 zyxnml xzxzxyxyxx =¢¢-¢+¢¢-¢+¢¢-¢ ttttss  

In the same way it is shown that the new strain components (e'x -e''x),  
(e'y -e''y)…. etc. also satisfy the equations of compatibility. A new solution  (s'x - s''x),  

(s'y - s''y),….. (t'xz -t''xz) represents a situation where body forces and surface forces both are 
zero.   The work done by these forces during loading is zero and it follows that the total 
strain energy vanishes, i.e.,  

ò ò ò Vo dxdydz = 0 

 where Vo = (sxex + syey + szez + txy gxy + tyz gyz + tzx gzx) 
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The strain energy per unit volume Vo is always positive for any combination of strains and 
stresses.  Hence for the integral to be zero, Vo must vanish at all the points, giving all the 
stress components (or strain components) zero, for this case of zero body and surface forces. 

Therefore   (s'x-s''x)=(s'y-s''y )=(s'z-s''z)= 0  

and (t'xy-t''xy) = (t'yz-t''yz) = (t'zx-t''zx) = 0  

This shows that the set s'x, s'y, s'z,…. t'zx is identical to the set s''x, s''y, s''z, …. t''zx and 
there is one and only one solution for the elastic problem.  
 
4.2.6    NUMERICAL EXAMPLES 

Example 4.1 
The following are the principal stress at a point in a stressed material. Taking 

2/210 mmkNE =  and 3.0=n , calculate the volumetric strain and the Lame’s 
constants. 

222 /120,/150,/200 mmNmmNmmN zyx === sss  

Solution: We have 

               ( )[ ]zyxx E
ssnse +-=

1
 

                    ( )[ ]1201503.0200
10210

1
3

+-
´

=  

           41067.5 -´=\ xe  

              ( )[ ]xzyy E
ssnse +-=

1
 

                    ( )[ ]2001203.0150
10210

1
3

+-
´

=  

           41057.2 -´=\ ye  

              ( )[ ]yxzz E
ssnse +-=

1
 

                   ( )[ ]1502003.0120
10210

1
3

+-
´

=  

          51014.7 -´=\ ze  

Volumetric strain = ( )zyxv eeee ++=  
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                                      544 1014.71057.21067.5 --- ´+´+´=  

                             310954.8 -´=\ ve  

To find Lame’s constants 

We have, ( )n+=
12
E

G  

               ( )3.012
10210 3

+
´

=G  

23 /1077.80 mmNG ´=\  

   
( )
( )GE

EGG
3

2
-
-

=l  

       
( )

( )33

333

1077.80310210
102101077.8021077.80

´´-´
´-´´´

=  

23 /1014.121 mmN´=\l  
 
Example 4.2 
The state of strain at a point is given by 

001.0,004.0,0,003.0,001.0 =-===-== yzxzxyzyx gggeee  

Determine the stress tensor at this point. Take 26 /10210 mkNE ´= ,  
Poisson’s ratio = 0.28. Also find Lame’s constant. 

Solution: We have 

                ( )n+=
12
E

G  

                    ( )28.012
10210 6

+
´

=  

            26 /1003.82 mkNG ´=\  

But 
( )
( )GE

EGG
3

2
-
-

=l  

           
( )

( )66

666

1003.82310210
102101603.8221003.82

´´-´
´-´´´

=  

       26 /1042.104 mkN´=\l  
Now, 

  ( ) ( )zyxx G eelels +++= 2   
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         ( ) ( )0003.01042.104001.01042.10403.822 66 +-´+´+´=  
2/44780 mkNx -=\s  

or MPax 78.44-=s  

  ( ) ( )xzyy G eelens +++= 2  

         ( ) ( ) ( )001.001042.104003.01042.10403.822 66 +´+-´´+´=  

2/701020 mkNy -=\s  

or MPay 02.701-=s  

     ( ) ( )yxzz G eelels +++= 2  

            = ( ) ( ) ( )003.0001.01042.10401042.10403.822 66 -´++´  

  2/208840 mkNz -=\s  

or  MPaz 84.208-=s  

    xyxy Ggt =  

          = 01003.82 6 ´´  

0=\ xyt  

    26 /82030001.01003.82 mkNG yzyz =´´== gt  

or MPayz 03.82=t  

     ( ) 26 /328120004.01003.82 mkNG xzxz -=-´´== gt  

 MPaor xz 12.328-=t  

\ The Stress tensor is given by 

 
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

--
-

--
=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

=
84.20803.8212.328

03.8202.7010

12.328078.44

zyzxz

yzyxy

xzxyx

ij

stt
tst
tts

s  

 
Example 4.3 
The stress tensor at a point is given as 

2/

160100120

100240160

120160200

mkN
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
-

-
 

Determine the strain tensor at this point. Take 3.0/10210 26 =´= nandmkNE   
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Solution: ( )[ ]zyxx E
ssnse +-=

1
 

               = ( )[ ]1602403.0200
10210

1
6

+--
´

 

           610067.1 -´=\ xe  

( )[ ]xzyy
E

ssnse +-=
1

 

         = ( )[ ]2001603.0240
10210

1
6

+--
´

 

      610657.1 -´-=\ ye  

   ( )[ ]yxzz E
ssnse +-=

1
 

         = ( )[ ]2402003.0160
10210

1
6

--
´

 

      61082.0 -´=\ ze  

Now, ( ) ( )
26

6

/1077.80
3.012

10210
12

mkN
E

G ´=
+
´

=
+

=
n

 

 xyxyxy G ggt ´´== 61077.80  

    6
6

10981.1
1077.80

160 -´=
´

==\
G

xy
xy

t
g  

 6
6

1024.1
1077.80

100 -´=
´

==
G

yz
yz

t
g  

 6
6

10486.1
1077.80

120 -´-=
´

-
==

G
zx

zx

t
g  

Therefore, the strain tensor at that point is given by 

  

÷÷
÷
÷
÷
÷
÷

ø

ö

çç
ç
ç
ç
ç
ç

è

æ

=
÷
÷
÷

ø

ö

ç
ç
ç

è

æ
=

z
zyzx

yz
y

xy

xzxy
x

zzyzx

yzyxy

xzxyx

ij

e
gg

g
e

g

gg
e

eee
eee
eee

e

22

22

22

 

610

82.062.0743.0

62.0657.19905.0

743.09905.0067.1
-´

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
-

-
=\ ije  
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Example 4.4 
 
A rectangular strain rosette gives the data as below. 

msmicrometre /6700 =e    

msmicrometre /33045 =e  

msmicrometre /15090 =e  

Find the principal stresses 21 ss and if 3.0,102 5 =´= nMPaE  

Solution: We have 
                 6

0 10670 -´== ee x  

                  6
90 10150 -´== ee y  

    ( )900452 eeeg +-=xy = ( )666 1015010670103302 --- ´+´-´´  
610160 -´-=\ xyg  

Now, the principal strains are given by 

       ( ) 22
minmax 2

1
2 xyyx

yxor gee
ee

ee +-±÷÷
ø

ö
çç
è

æ +
=  

i.e.,  ( )[ ] ( )26266
minmax 1016010150670

2
1

10
2

150670 --- ´-+-±÷
ø
ö

ç
è
æ +

=ee or  

     66
minmax 1003.27210410 -- ´±´=\ ee or  

                 6
1max 103.682 -´==\ ee  

                     6
2min 1097.137 -´== ee  

The principal stresses are determined by the following relations 
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