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Module 4: Stress-Strain Relations

4.2.1 ELASTIC STRAIN ENERGY FOR UNIAXIAL STRESS
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Figure 4.1 Element subjected to a Normal stress

In mechanics, energy is defined as the capacity to do work, and work is the product of force
and the distance, in the direction, the force moves. In solid deformable bodies,
stresses multiplied by their respective areas, results in forces, and deformations are distances.
The product of these two quantities is the internal work done in a body by externally
applied forces. This internal work is stored in a body as the internal elastic energy of
deformation or the elastic strain energy.

Consider an infinitesimal element as shown in Figure 4.1a, subjected to a normal stress o
The force acting on the right or the left face of this element is oy dydz. This force causes an
elongation in the element by an amount & dx, where & is the strain in the direction X.

. , N : : dy dz
The average force acting on the element while deformation is taking place is o, y2 .

This average force multiplied by the distance through which it acts is the work done on the
element. For a perfectly elastic body no energy is dissipated, and the work done on the
element is stored as recoverable internal strain energy. Therefore, the internal elastic strain
energy U for an infinitesimal element subjected to uniaxial stress is

du =%Gxdydz X & dx
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= 1 oy & dx dy dz
2
1
Therefore, dU = > oy & dV

where dV = volume of the element.
Thus, the above expression gives the strain energy stored in an elastic body per unit volume

of the material, which is called strain-energy densityU,, .

Hence, d—U =U, =1 Oy &

dav 2
The above expression may be graphically interpreted as an area under the inclined line
on the stress-strain diagram as shown in Figure (4.1b). The area enclosed by the inclined
line and the vertical axis is called the complementary energy. For linearly elastic materials,
the two areas are equal.

4.2.2 STRAIN ENERGY IN AN ELASTIC BODY
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Figure 4.2. Infinitesimal element subjected to: uniaxial tension (a), with resulting
deformation (b); pure shear (c), with resulting deformation (d)

When work is done by an external force on certain systems, their internal geometric states
are altered in such a way that they have the potential to give back equal amounts of work
whenever they are returned to their original configurations. Such systems are called
conservative, and the work done on them is said to be stored in the form of potential energy.
For example, the work done in lifting a weight is said to be stored as a gravitational potential
energy. The work done in deforming an elastic spring is said to be stored as elastic potential
energy. By contrast, the work done in sliding a block against friction is not recoverable; i.e.,
friction is a non-conservative mechanism.

Now we can extend the concept of elastic strain energy to arbitrary linearly elastic bodies
subjected to small deformations.

Figure 4.2(a) shows a uniaxial stress component o acting on a rectangular element,
and Figure 4.2(b) shows the corresponding deformation including the elongation due
to the strain component &,. The elastic energy stored in such an element is commonly called
strain energy.

In this case, the force oy dydz acting on the positive X face does work as the element
undergoes the elongation £,dx . In a linearly elastic material, strain grows in proportion to
stress. Thus the strain energy dU stored in the element, when the final values of stress and
strainare o, and ¢, is

du =% (0 dydz) (50X)
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= % oy & dV (4.28)

where dV = dx dy dz = volume of the element.

If an elastic body of total volume V is made up of such elements, the total strain energy U is
obtained by integration

1
u=> j o €, dV (4.29)

Taking oy =E and g = é
A L

where P = uniaxial load on the member

o = displacement due to load P

L = length of the member,

A = cross section area of the member
We can write equation (4.28) as

U _1(PYs J'd\/
2VANL)Y
Therefore, U = %P.é sinceV=L x A (4.30)

Next consider the shear stress component 7, acting on an infinitesimal element in
Figure 4.2(c). The corresponding deformation due to the shear strain component y, is
indicated in Figure 4.2(d). In this case the force 7, dxdz acting on the positive y face does

work as that face translates through the distance ¥, dy. Because of linearity, %, and z, grow
in proportion as the element is deformed.

The strain energy stored in the element, when the final values of strain and stress are y, and
Ty IS

du = %(Txydxdz)(yxydy)

1
=57 dxdydz

Therefore, dU =% Ty Yoy AV (4.31)

The results are analogous to equation (4.28) and equation (4.31) can be written for any other

pair of stress and strain components (for example, o, and & or 7, and ;) whenever the
stress component involved is the only stress acting on the element.

Finally, we consider a general state of stress in which all six stress components are present.
The corresponding deformation will in general involve all six strain components. The total

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module4/Lesson2

strain energy stored in the element when the final stresses are oy, oy, 0, Ty, Ty, Tx and the
final strains are &, &, &, ¥y % Yax IS thus

du =% (Ox&+ Oy + G+ Ty Yoy + Tyr Kz + Tax Yax) AV (4.32)

In general, the final stresses and strains vary from point to point in the body. The strain
energy stored in the entire body is obtained by integrating equation (4.32) over the volume
of the body.

1
U= E J. (Ux8x+ O'y8y+ 0;& + Tay Yy + Tz Yoz + Ty }/ZX) dv (433)
The above formula for strain energy applies to small deformations of any linearly
elastic body.

4.2.3 BOUNDARY CONDITIONS

The boundary conditions are specified in terms of surface forces on certain boundaries of a
body to solve problems in continuum mechanics. When the stress components vary over the
volume of the body, they must be in equilibrium with the externally applied forces on the
boundary of the body. Thus the external forces may be regarded as a continuation of internal
stress distribution.

Consider a two dimensional body as shown in the Figure 4.3
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Figure 4.3 An element at the boundary of a body
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Take a small triangular prism ABC, so that the side BC coincides with the boundary of the
plate. At a point P on the boundary, the outward normal is n. Let X and Y be the

components of the surface forces per unit area at this point of boundary. X and Y must be a
continuation of the stresses o,, o, and 7, at the boundary. Now, using Cauchy’s equation,

X!

we have
T, =Y=GX|+TXym (a)
T,=Y=r,l+0,m

in which | and m are the direction cosines of the normal n to the boundary.

For a particular case of a rectangular plate, the co-ordinate axes are usually taken parallel to
the sides of the plate and the boundary conditions (equation a) can be simplified. For
example, if the boundary of the plate is parallel to x-axis, at point P,, then the boundary
conditions become

X=r,and Y =0, (b)

Further, if the boundary of the plate is parallel to y-axis, at point P,, then the boundary
conditions become

Y:ox and Vzrxy (c)

It is seen from the above that at the boundary, the stress components become equal to the
components of surface forces per unit area of the boundary.

424 ST.VENANT'S PRINCIPLE

For the purpose of analysing the statics or dynamics of a body, one force system may be
replaced by an equivalent force system whose force and moment resultants are identical.
Such force resultants, while equivalent need not cause an identical distribution of strain,
owing to difference in the arrangement of forces. St. Venant’s principle permits the use of an
equivalent loading for the calculation of stress and strain.

St. Venant’s principle states that if a certain system of forces acting on a portion of the
surface of a body is replaced by a different system of forces acting on the same portion of the
body, then the effects of the two different systems at locations sufficiently far distant from
the region of application of forces, are essentially the same, provided that the two systems of
forces are statically equivalent (i.e., the same resultant force and the same resultant moment).

St. Venant principle is very convenient and useful in obtaining solutions to many
engineering problems in elasticity. The principle helps to the great extent in prescribing the
boundary conditions very precisely when it is very difficult to do so. The following figures
4.4, 4.5 and 4.6 illustrate St. Venant principle.
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Figure 4.4 Surface of a body subjected to (a) Concentrated load and
(b) Strip load of width b/2
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Figure 4.5 Surface of a body subjected to (a) Strip load of width b and
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(b) Strip load of width 1.5b
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Figure 4.6 Surface of a body subjected to (a) Two strip load and
(b) Inverted parabolic two strip loads

-b

Figures 4.4, 45 and 4.6 demonstrate the distribution of stresses (q) in the body when
subjected to various types of loading. In all the cases, the distribution of stress throughout the
body is altered only near the regions of load application. However, the stress distribution is
not altered at a distance X = 2b irrespective of loading conditions.

4.25 EXISTENCE AND UNIQUENESS OF SOLUTION (UNIQUENESS
THEOREM)

This is an important theorem in the theory of elasticity and distinguishes elastic deformations
from plastic deformations. The theorem states that, for every problem of elasticity defined by
a set of governing equations and boundary conditions, there exists one and only one solution.
This means that “elastic problems have a unique solution” and two different solutions cannot
satisfy the same set of governing equations and boundary conditions.
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Proof

In proving the above theorem, one must remember that only elastic problems are dealt with
infinitesimal strains and displacements. If the strains and displacements are not infinitesimal,
the solution may not be unique.

Let a set of stresses ¢},a7,........ 7. represents a solution for the equilibrium of a body under

surface forces X, Y, Z and body forces F,, F,, F,. Then the equations of equilibrium and
boundary conditions must be satisfied by these stresses, giving
oo!

a! !
O 0% e _0r (x,Y,2)
OX 8y oz

and o+t ,m+z n=F; (XV,2)

X

where (X, Y, Z) means that there are two more equations obtained by changing the suffixes y

for X and z for y, in a cyclic order.

Similarly, if there is another set of stresses o, c/,....7 , Which also satisfies the boundary

conditions and governing equations we have,

oc! Oty Ot
X + Xy +

2 +x=0; X,Y,Z
OX oy 0z (x.y.2)

and oyl +Tym+zin=F; (X,Y,2)

By subtracting the equations of the above set from the corresponding equations of the
previous set, we get the following set,

(e, —e2)+ (et —10)=0; (xy.2)

a 1 " i
(ol —o!)+ ~

a_x X X ay
and (O-:( _G:(,)I +(T:(y _T:y)m+(r>,(z _T::z)n = 01 (X, Y, Z)

In the same way it is shown that the new strain components (&x -&"),
(€y -€"y).... etc. also satisfy the equations of compatibility. A new solution (o'x - o),

(dy-"y),..... (T« -T'"x) represents a situation where body forces and surface forces both are
zero. The work done by these forces during loading is zero and it follows that the total
strain energy vanishes, i.e.,

I J. IVodxdydzzo

where V, = (ox&c+ 0yg + 0,6 + Ty ¥y + Tz Yo + Tox Yax)

10
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The strain energy per unit volume V, is always positive for any combination of strains and
stresses. Hence for the integral to be zero, V, must vanish at all the points, giving all the
stress components (or strain components) zero, for this case of zero body and surface forces.

Therefore (o'x-0"'y)=(0'y-0",)=(d'~0",)=0
and (T'xy'T“xy) = (fyz'T“yz) =(7x7'%x) =0

This shows that the set ¢y, o'y, 0;,.... 7 is identical to the set o'y, o",, 0", .... 7" and
there is one and only one solution for the elastic problem.

4.2.6 NUMERICAL EXAMPLES

Example 4.1
The following are the principal stress at a point in a stressed material. Taking

E = 210kN /mm? and v =0.3, calculate the volumetric strain and the Lame’s
constants.

o, =200N/mm?, o, =150N/mm? o, =120N/mm’
Solution: We have
SX :é[@x —V(Gy +GZ)]

3 1
210x10°

g, =567x10"

[200 - 0.3(150 +120)]

5y ==lo,-vlo,+0,)

_ Tllos[lso ~0.3(120 + 200)]
X

g, =257x10"
€, =é[o-z _V(O-x +O—Y)]

_ Tllcﬁ [120 - 0.3(200 + 150)]
X
ng, =T7.14x107°

Volumetric strain = ¢, = (gx +e, + gz)

11
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=5.67x107" +2.57x10* +7.14x10"°
g, =8.954x107°
To find Lame’s constants
E
2L+v)
_ 210x10°
~ 2(1+0.3)
.G =80.77x10°N /mm?
_ G(2G-E)
~ (E-30G)
~ 80.77x10°(2x80.77x10° — 210x10° )
~ (220x10° -3x80.77x10°%)
A =121.14x10°N / mm?

We have, G =

Example 4.2
The state of strain at a point is given by

g, =0.001, g, = -0.003, ¢, = Y = 0, vy, =-0.004, Yy = 0.001

Determine the stress tensor at this point. Take E =210x10°kN /m?,
Poisson’s ratio = 0.28. Also find Lame’s constant.

Solution: We have

E
21+v)

_ 210x10°
 2(1+0.28)

.G =82.03x10°kN /m?
G(2G -E)
(E-3G)
_ 82.03x10°(2x82.03x16° — 210x10°)
(210x10° —3x82.03x10°)

But A =

5 A =104.42 x10°kN /m?
Now,

o, =(2G + ), +Ale, +e,)

12
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= (2x82.03+104.42)10° x 0.001+104.42 x10°(— 0.003+ 0)
.o, =—44780kN /m?

or o, =—44.78 MPa
o, = (ZG + v)gy + e, +e,)
= (2x82.03+104.42)x10° x (— 0.003)+104.42 x10° (0 + 0.001)

..o, =—701020kN /m?

or o, =-701.02 MPa

o, =(2G+ 1), + Ale, +¢,)
=(2x82.03+104.42)10°(0)+104.42x10°(0.001 - 0.003)

~208840kN /m?

SO,
or o, =-208.84 MPa
Ty =GV
= 82.03x10° x0
STy = 0
T, = nyz =82.03x10° x0.001 = 82030kN /m?
or 7, =82.03MPa

t, =Gy, =82.03x10° x (- 0.004) = —~328120kN / m?
orr,, =-328.12 MPa

.. The Stress tensor is given by

Oy Ty Tu —44.78 0 —328.12
0y =|Ty Oy Ty |= 0 —-701.02 82.03
Ty Ty O, -328.12 82.03 —208.84

Example 4.3
The stress tensor at a point is given as
200 160 -120
160 —240 100 |kN/m?
—-120 100 160

Determine the strain tensor at this point. Take E =210x10°kN /m? and v = 0.3

13
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Solution: &, :%[O'X —V(O'y +O'z)]

=ﬁ [200 - 0.3(- 240 +160))
X

g, =1067x10"°
1

€y

E[Gy—V(GZ +GX)]

_ ﬁ [- 240 - 0.3(160 + 200)]
X

&, =-1657x10°

g, 2%[02 —V(GX +0y)]

1
=———|160-0.3(200 — 240
210x10° [ ( )]
se,=082x107°
6
Now, G = ——— = 21030 _ g5 27 10%kN 1 m?
20+v) 2(1+0.3)
7,, =Gy, =80.77 x10° XY
T
S == &6 =1.981x10°
G 80.77x10
Yy =Ti=$6=124x10*6
G 80.77x10
L = -1.486x10°°
G 80.77x10
Therefore, the strain tensor at that point is given by
£, 7& T
gx Xy Xz 2 2
_ _ yxy yyz
Ej | €y &y &y |7 2 y 2
Ex 7y g, 7/i ﬁ
2 2 ’
1.067 0.9905 -0.743
g; = 09905 -1.657 0.62 x107°
-0.743 0.62 0.82
14
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Example 4.4

A rectangular strain rosette gives the data as below.
&, =670 micrometres/m

&,5 = 330micrometres/m
&g =150 micrometres/m

Find the principal stresses o, and o, if E =2x10°MPa,v =0.3
Solution: We have
e, =&, =670x10"°
£, = €9 =150x10°
Yy = 2645 — (60 +£9)=2x330x10° —(670x10° +150x10°¢)
LYy =—160 x107°
Now, the principal strains are given by

€ max OF € min =[8X _'Z_Sy}i%\/(gx _gy)2 +75y

. (670+150
L€ Sy OF iy =| ————

Sg., 0rg,. =410x107° +272.03x10°°
&y = € =682.3x107°
=g, =137.97x10"°

JlO‘S + %J [(670-15000°F +(~160x10°¢ f

gmin

The principal stresses are determined by the following relations

-6
. (&, +v¢292).E _ (682.03+ o.3><1327.97)10 < 2x10°
1-v 1-(0.3)
-0, =159MPa
-6
Similarly, o, = (g, + v;el).E _ (137.97+0.3x 6522.03)10 <25 10°
1-v 1-(0.3)
.0, =753MPa
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